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— Relic Detection and Sterile Neutrinos

* High precision instrumentation
(background rejection methods)

— Cryogenic calorimeter (~0.1eV resolution)
— RF tracker (10-1* W single electron detection)
— Time-of-flight system

* Target mass and resolution requirements
— Neutrino capture rates vs. mass sensitivity




The Universe was not always as cold
and dark as it is today — there are a
host of landmark measurements that
track the history of the universe

None of these measurements, however,

reach back as far in time as ~1 second
after the Big Bang

— At ~1 second the hot, expanding
universe is believed to have become
transparent to neutrinos

In the present universe, relic neutrinos
are predicted to be at a temperature of
1.9K (1.7x10 eV) and to have an
average number density of ~56/cm? per
lepton flavor
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« Basic concepts for relic neutrino detection were laid out in
a paper by Steven Weinberg in 1962 [Phys. Rev. 128:3, 1457]

— Look for relic neutrino capture on tritium by measuring electrons at
or above the endpoint spectrum of tritium beta-decay
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Figure 1: Emitted electron density of states vs klnetlc energy for neutrino
capture on beta decaying nuclei. The spike at Q + 2m i1s the CNB signal
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« 1 SNU = 1 neutrino interaction per second for 1036 target nuclel
« 100 grams of tritium (2.2 x 10%° nuclei)
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« PTOLEMY ~3618 SNU with 100g (102° nuclei) 2.5 evts/year
« Gallex 70 SNU with 30 tons (102%° nuclei) 1200 evts/year

« Homestake (Chlorine) 8 SNU with 600 tons (103! nuclei)
2500 evts/year

Cross Sections

Hard to compete with
Tritium for sub-MeV
neutrino energies
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Using v capture...

_ _ _ P ~ 0.4x10° .
If Dark Matter is made by sterile neutrino = Ps M[keV]

Looking beyond the beta decay endpoint energy (background free region)

100 g of Tritium for 1 year
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* High precision on endpoint
— Cryogenic calorimetry energy resolution
— Goal: 0.1eV resolution

« Signal/Background suppression
— RF tracking and time-of-flight system
— Goal: sub-microHertz background rates above endpoint

* High mass, high resolution tritium target
— Surface deposition (tenuously held) on conductor in vacuum
— Goal: for CNB: maintains 0.1eV signal features with high efficiency
— For sterile nu search: maintains 10eV signal features w/ high eff.

« Scalable mass/area of tritium source and detector
— Goal: relic neutrino detection at 100g
— Sterlle neutrlno (wl % electron flavor) at ~1g
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Low Field

Cryogenic
Region

Calorimeter

Tritium Source Disk
(Surface Deposition)

A Long High Uniformity (~0.1eV)
/ High Field Solenoid ~50-150ey  Solenoid (~2T) \

\ below .
Endpoint E,+30kV 0-1keV =

E,-18.4keV

RF Tracking
(38-46 GHz)

S

: Time-of-Flight
Accelerating MAC-E filter Accelerating X
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Transmon-Edge Sensors for Calorimetry

— ANL Group (Clarence Chang) estimates ~0.55eV at
1keV and ~0.15eV at 0.1keV operating at 70-100mK

— New design introduces periodic pattern of normal

regions in the TES to increase stability

« Magnetic fields of few hundred Gauss may be able to
thread through normal regions

(example) SPIDER Island TES

Important points for experiment:

1) Need to truncate 18.570 keV energy spectrum
and de-accelerate to within ~150eV of endpoint
2) Spatially segment source disks to map
efficiently to finite TES sensor area
(capacitance) of order ~1cm?/channel




r’g:r? ‘(aaf( 2( ; "' -3
(?L[grfr\exerr %ia .

 NIST and ANL re leaders in the development of
these sensors (driven by X-ray source astrophysics)
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FIG. 1. (Color online) Magnetic superconducting transition for tin wire at
two magnetic fields. For an applied field (H,) of 1.3X10* A/m (160 Oe)
applied parallel to the wire axis, the 7, is reduced from 3.7 to 2.5 K and the
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TES and PTOLEMY

B field “feed through”
Multi-layer e
superconducting
shield (ALD)
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Microwave-readout Massive SQUID I\/Iultlplexer

Clarence Chang

CPW transmission line
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Ya-wave CPW
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- Change in flux changes SQUID inductance

« at 1-10 GHz, can support ~1 MHz of bandwidth with
~1000 channels per line

- Originally developed for CMB measurements, recently
demonstrated successful operation Wlth X—ray u- cals
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* RF tracking and time-of-flight
— Thread electron trajectories (magnetic field lines) through a
waveguide with ~wide bandwidth (few x10-°) to identify
cyclotron RF signal in transit times of order 0.2usec

* Currently using WMAP (Norm Jarosik) HEMT amplifiers with 1K/GHz
noise and operating in the Q-Band range 38-46 GHz (~1.9T)

* Accelerate electrons to E,+30keV in antenna region to increase
electron cyclotron radiation — record in long uniform field (few x10-°)

— Requiring an RF antenna “tracking” signal effectively
Introduces a transverse momentum cut on the signal
electron in the bending plane

* It may be possible to recover low pT electrons with a dual-tracker




Readout Orthogonal to
Electron Trajectory

Q-Band (38-46 GHz)
Magic Tee Waveguide
Junction




« MAC-E filter cutoff of 10-2 to 10-3 precision on electron energy
— Energy window below endpoint needed for 2 acceptance ~150eV
— Voltage of filter cut-off accurate to ~1eV
— Source aperture of ~30cm? within 3.2T bore

BFM N CS NI g TSI W 2 =
b i e AR T o T o) T - Alithony AshmorSigs
AR SREPREY S S
- s - « = ' Ny = ¢ a < <
s @& “WHV e - . > w




HBE §

rotot
LOTOfr

Dh/
>——

IPTQ!:EIIH




WARNING
STRONG MAGNETIC
MUDARIA
NOT BRING MAGH
PERROUS ORIECTS INTO THE LAD

—

PTQLEM? prototype at PPPL — January 2013
(large vac-tank ready for install)
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* In order to avoid magnetic bounce, electrons must be

accelerated back up in going from mid-plane to detector
 Different trajectories have different cut-off precisions
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I Center of source \

Source: 3.22 T, 184 kV
Midpoint: 0.0021 T, 0.1 kV
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: Different geometries were mvestlgated

— Example configuration places a 12m diameter disk at the
input to the 1st MAC-E magnet (accelerated to ~90keV)

— Source disk will consist of 10#-10° individual plates

High Low Field

Source  Fjgly  (~0.003T) Long Uniform
Solenoid . Solenoid (2T)
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« Uses large uniform geometry to achieve ~0.2eV cut-off
sensitivity — “Cut and Count” experiment

— PTOLEMY Goal: 10mHz - sub-uHz Background Rate

E .. ~66 micrograms
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— Stringent requirements on tritium
target resolution (0.1eV)
— Graphene substrate studies

(under study by theorists in group)

o Sterile Neutrino Search

— Modest resolution requirement
on target (10eV)
— Titanium films (T~1O19/cm2) — high mass Capablllty
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At PPPL we are comm|SS|on|ng with samples of

amorphous-Silicon:H:T plates

— Experience with “tenuously held” tritium

Carbon tile image of tritium —

* Depositions on titanium, gold, diamond, and graphene are
being investigated (done by Canadian firms and Savannah
River National Lab (SRNL) in collaboration with PPPL)

— SRNL has titanium samples that are being transferred to PPPL
— Existing graphite tiles (0.5 Ci) may have graphene-T structures

« Source strength surface densities of ~1Ci/cm?

(100micrograms/cm?) are possible, but energy spread from
source scatterlng needs to be measured
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* For studying antenna data, a windowless APD is used to tag

the tritium decay from a tritium disk source

— Trigger on APD and record antenna (50 GHz mixed down to ~10 MHz
bandwidth) =

Final APD: Tritium Source

[ Base
[ Pulse
rIC—1 Difference

Trigger
threshold

Number of Events

| Endpoint
Spectrum

-0.6 -0.4
Pulse Area
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High precision (0.1eV) electron gun
— Off-axis directionality needed for RF antenna calibration

— Investigating possibility of a single or multiple high precision guns
situated outside of the magnetic field of the tritium target plate with a
“switch yard” of input spigots to provide in situ calibration peaks for
every calorimeter channel and electron trajectory

Vacuum studied with residual gas analyzer (RGA)

Several possibilities for background estimation

— sideband data-driven background estimation below MAC-E filter cutoff
— out-of-time tracking-calorimeter coincidence

— (vacuume-)scattered electron trajectory analysis

— varying source strength tiles (null sources)

NMR calibration for magnetic field uniformity in RF tracker




High Field Low Field

Source Solenoid ~ (~0-003T) Long Uniform

Precision e-gun | Disk (~4T) Solenoid (2T)
“switchyard” | (70-3T) \

Energy resolutior"i7ﬂ‘llii,n’éfafity for calorimeter AN
Angular conffrq,.l”' for RF tracker
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1st Milestone: \/(done) Commission small test vacuum chamber with APD readout
of tritium spectrum in magnetic field

- Chamber arrived, Vacuum fittings completed.

- Electrical fittings, APD windowless from CERN cleaned at PRISM.

- First spectrum taken.

2nd Milestone: (in progress) Tritium spectrum taken under full magnetic transport
- Installation of full-scale vacuum chamber.

- Commissioning of vacuum (1%t pump-down completed), Electrical fittings for in-
vacuum readout system with APD detector.

- Tritium spectrum taken with magnetic transport in full-scale vacuum chamber.

3rd Milestone: Detect RF signal in coincidence with APD trigger in vacuum.

- Re-energize 1.9T magnet with few x10- field uniformity

- Install WMAP Q-Band amplifier with Magic Tee waveguide and 100 MHz mixer

- Install APD trigger system and APD/antenna digital readout in vacuum

- Observe 3-5 Sigma RF signals with 32P beta-source
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4t Milestone: Commission MAC-E filter.

- Finish fabrication of copper tubes

- Install in Vac-tank with HV stand-offs and 50kV cable/connectors.

- Evaluate performance of filter cut-off with APD data in vacuum.

5t Milestone: First physics dataset analyzed for sterile nu search.

- Measure magnetic aperture of source to detector with MAC-E filter applied

- Scan EM cutoff and measure sharpness of low energy cutoff across aperture

- Optimize readout system and DAQ for 24/7 operation

- Upgrade source strength in to 1 Curie or as large as possible

- Take calibration data and background runs interspersed with data runs
6t Milestone: Validate technologies for 100g PTOLEMY.

- Introduce disk source feeding source magnet aperture.

- Introduce TES micro-calorimeter with sub-eV resolution.

- Benchmark system performance.




These plates float on
air for repositioning

A 12m diameter
Source Disk is
comparable to the
size of a CMS YE-2
end-plate at CERN




* Are there experimental outcomes that are inconsistent with Big
Bang cosmology? Yes!

— Too many cold neutrinos with no visible mass separation from the end-
point (no galactic clumping factor) would contradict the initial conditions
of Big Bang nucleosynthesis (present day H, D, He, Li abundances)

* Are there outcomes that are inconsistent with the Standard
Model of particle physics? Yes!

— No neutrino detection (exclusion of the relic neutrino density below
prediction) could mean that neutrinos have a finite lifetime

* Are there possibilities for discovering new physics? Yes!

— Alternative dark matter candidates such as keV sterile neutrinos may

have a non-zero electron flavor content and would appear as a mass
peak above the end-point
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Is there a possibility to make long-term contributions to the
understanding of the Universe?

— Absolutely! We believe that we live in a sea of 14 billion year old
neutrinos all around us (the oldest relics in the Universe) — is it true?

— When one opens a new frontier of exploration, there is no telling what
will be found and learned




* Important R&D still to be done on source,
detector, background levels

 PPPL prototype is an excellent test bed for
validating the technologies for a 100g PTOLEMY

— Tritium target development

 KATRIN expected to provide more input on the
neutrino mass(es)

Collaborators are very welcome
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. TV =1.9K=~1.7 x 10* eV is small compared to
at least 2 of the neutrino mass eigenstates

The local neutrino number density
(with electron flavor content) may be
enhanced in clusters by factors that
typically range from 1-100 depending

on the neutrino mass(es)
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m, =0.3 eV 0.15 eV

This would translate directly in 1-100
times more CNB signal events. |

1 10 100 1 10 100
r [h 1kpc]
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Central vacuum chamber on rails to provide
access to source and detector areas during install
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